連載
» 2021年04月05日 05時00分 公開

5分で分かる機械学習(ML)5分で分かるシリーズ(1/5 ページ)

機械学習をビジネスで活用したい人に向け、最新技術情報に基づき、機械学習の概要、統計学との違い、機械学習の作業フローと学習方法、回帰/分類/クラスタリング/次元削減に使える手法、次の一歩を踏み出すための参考情報を、5分で読めるコンパクトな内容で紹介する。

[一色政彦,デジタルアドバンテージ]

この記事は会員限定です。会員登録(無料)すると全てご覧いただけます。

「5分で分かるシリーズ」のインデックス

連載目次

1分 ―― 機械学習 (ML:Machine Learning)とは

ぶちょーでも分かるAI

 例えば人間の子供に犬や猫を見せて「あれが犬」「これが猫」と覚えさせるのをイメージしてみてください。同様に、例えば犬や猫の画像データから「あれが犬」「これが猫」と機械的に学習させることを機械学習ML)と呼びます。

 「5分で分かる人工知能(AI)」でも説明しましたが、機械学習には例えば、回帰分析や主成分分析、決定木、サポートベクタマシン、ディープラーニング(=ニューラルネットワークという仕組みを発展させたもの)など多くの手法(後述)があります(図1)。

図1 機械学習(ML)とは 図1 機械学習(ML)とは

統計学と機械学習の違い

 回帰分析や主成分分析と聞いて、統計学の多変量解析を思い浮かべたかもしれません。実際に、一部の統計学の手法は機械学習でも使用します。しかし、統計学はデータを分析してインサイト(=内在する本質)を得ることを重視しているのに対し、(人工知能における)機械学習は何らかの手法/アルゴリズムを用いてデータから予測することを重視している点が異なります。分析重視か活用重視かという微妙な違いですが、これはそのままデータサイエンスと人工知能の違いでもあります。

データサイエンスと人工知能の違い

 データサイエンスでは、統計学/機械学習/数理モデルに基づくデータ分析によって、データからインサイトを得ることが主目的です。例えば「Webサイトのクリックデータを分析して何らかのインサイトを得る」ような分析作業はデータサイエンティストの得意分野です。

 それに対し、人工知能を実現するための機械学習では、データから予測することが主目的となります。例えば「Webサイトのクリックデータからお勧めの商品を提示するレコメンデーション機能を実装する」ような活用作業は機械学習エンジニアの得意分野です。他には、手書き文字の認識、顔認識、画像生成、翻訳エンジン、テキスト生成、自動運転、ロボット制御なども、「データ分析でインサイトを得たい」というよりも「データからの予測を行う機能(=機械学習モデル)を活用したい」という目的の方が強いと考えられるので、機械学習エンジニア向きの作業といえます。

 ビジネスで機械学習を採用する際には、どちらの目的を重視するかを意識して人選や発注をするとよりよいでしょう。さて次ページ以降では、人工知能における機械学習の内容について掘り下げて説明していきます。

       1|2|3|4|5 次のページへ

Copyright© Digital Advantage Corp. All Rights Reserved.

RSSについて

アイティメディアIDについて

メールマガジン登録

@ITのメールマガジンは、 もちろん、すべて無料です。ぜひメールマガジンをご購読ください。