検索
ニュース
台風や大雪などによる突発的な需要に対応:

気象データを基に「荒天時の商品特需」を予測 ウェザーニューズが在庫最適化エンジン「PASCAL」を開発

ウェザーニューズは、荒天時の商品の急激な需要変化を予測する在庫最適化エンジン「PASCAL」を開発した。小売業者などが保有する商品販売データと、日々の気象データなどを組み合わせて、平時だけでなく荒天時の来客数や商品需要を品目ごとに予測する。

Share
Tweet
LINE
Hatena

 ウェザーニューズは2020年8月3日、台風など荒天時の商品の急激な需要変化を予測する在庫最適化エンジン「PASCAL」を開発したと発表した。小売業者や製造業者に向けたもので、商品の需要だけでなく、台風や大雪などによって消費者需要が突発的に高まるタイミングや商品の売れる量、来客数の増減などを店舗ごとに予測する。

画像
在庫最適化エンジン「PASCAL」(出展:ウェザーニューズ

台風や大雨、大雪などで発生する「買いだめ」予測は難しい

 荒天が発生すると、スーパーマーケットやコンビニエンスストアでは食料品や防災関連商品の需要が高まり、欠品が発生することがある。事前の買いだめや当日の買い控えといった荒天時の消費者行動を予測することが、従来の商品需要予測や店舗の経験則では難しいためだ。

 PASCALは、小売業者や製造業者が保有する商品の販売数や購買客数のデータと、日々の気象データなどを組み合わせて、平時だけでなく荒天時の来客数や商品需要を品目ごとに予測する。ウェザーニューズは荒天時の計画配送や計画生産判断の支援など、PASCALを利用した各種サービスを展開する予定だ。流通業や小売業に導入されている自動発注システムとの連携も見据える。

Copyright © ITmedia, Inc. All Rights Reserved.

ページトップに戻る