Deep Insider 全記事一覧

@IT/Deep Insider フォーラムのすべての記事を一覧表示しています。

Deep Insider 全記事一覧



最終更新日: 2019年10月24日

イベントから学ぶ最新技術情報(2019/10/24)

  1. AIの音声/画像認識技術は人間レベルを超えた!? Microsoftによる最新AI技術。Japan Partner Conference 2017 Tokyo
  2. Chainer×Azureの関係とは? Preferred NetworksのCEO、西川氏が登壇。JPC 2017 Tokyo
  3. 機械学習の作業がはかどる新ツール「Workbench」とは? TensorFlowやAWSも使える。Microsoft Tech Summit 2017
  4. 「DEEP LEARNING LAB」勉強会の開催方針と、7割補助金が出るハンズオン講座
  5. GTC 2018におけるAI関連の発表内容、そこから見えるNVIDIAの方向性
  6. 目指すべき今後の人工知能とは? パネルディスカッション ― データサイエンティスト協会 セミナー2018 第1回
  7. 深層学習にはどんなデータが使えるのか? どれくらいのデータ量が必要か? ― DLLAB コミュニティ勉強会 2018Q2
  8. 企業から見たデータサイエンティストの採用と育成(パネルディスカッション)― データサイエンティスト協会 調査・研究委員会セミナー
  9. MSやPFNのAI技術最新情報からPost Kまで ― DLLAB DAY 2018 基調講演レポート
  10. グーグルのAI技術、2018年9月最新情報 ― Google Cloud Next ’18 in Tokyo 基調講演レポート
  11. 生データ使い放題?! 「日本は機械学習パラダイス」になった ― DEEP LEARNING LAB 勉強会
  12. TensorFlow 2.0 α版で何が変わる? 新機能の概要 ― TensorFlow Dev Summit 2019
  13. AI・機械学習関連のマイクロソフト最新技術情報 〜de:code 2019の基調講演より〜
  14. グーグルのAI技術、2019年夏の最新情報 ― Google Cloud Next ’19 in Tokyo 基調講演2レポート
  15. Kaggle Grandmasterに聞く「トップデータサイエンティストの過去・現在・未来」 ― データサイエンティスト協会 6th シンポジウム

Python入門(2019/10/18)

  1. Pythonってどんな言語なの?
  2. Hello Python
  3. 数値と算術演算
  4. [Python入門]変数とは
  5. [Python入門]文字列の基本
  6. [Python入門]文字列の操作
  7. [Python入門]文字列の書式指定
  8. [Python入門]コメント
  9. [Python入門]if文による条件分岐
  10. [Python入門]for文による繰り返し処理
  11. [Python入門]while文による繰り返し処理
  12. [Python入門]関数の基本
  13. [Python入門]関数の引数
  14. [Python入門]関数のローカル変数とスコープ
  15. [Python入門]ローカル関数とラムダ式
  16. [Python入門]リストの基本
  17. [Python入門]リストの操作
  18. [Python入門]リストと繰り返し処理
  19. [Python入門]タプル
  20. [Python入門]辞書
  21. [Python入門]集合
  22. [Python入門]モジュールの使い方
  23. [Python入門]モジュールの作り方
  24. [Python入門]パッケージ
  25. [Python入門]Pythonのオブジェクトとは
  26. [Python入門]オブジェクトの同一性、比較、文字列表現
  27. [Python入門]Pythonの演算子まとめ
  28. [Python入門]クラスの基礎知識
  29. [Python入門]クラス変数/クラスメソッド/スタティックメソッド
  30. [Python入門]クラスを使ってスタックとキューを作成する
  31. [Python入門]クラスの継承
  32. [Python入門]リストを継承してスタックを作成する
  33. [Python入門]クラスのスコープとプライベートな属性
  34. [Python入門]多重継承
  35. [Python入門]多重継承とmixin
  36. [Python入門]例外と例外処理の基礎
  37. [Python入門]例外の送出と例外クラス
  38. [Python入門]ファイル操作の基本
  39. [Python入門]バイナリファイルの操作
  40. [Python入門]pickleモジュールによるオブジェクトの直列化
  41. [Python入門]shelveモジュールによるオブジェクトの永続化
  42. [Python入門]urllib.requestモジュールによるWebページの取得
  43. [Python入門]Beautiful Soup 4によるスクレイピングの基礎

TensorFlow 2+Keras(tf.keras)入門(2019/10/17)

  1. 第1回 初めてのニューラルネットワーク実装、まずは準備をしよう ― 仕組み理解×初実装(前編)
  2. 第2回 ニューラルネットワーク最速入門 ― 仕組み理解×初実装(中編)

DataRobot概説(2019/10/07)

  1. データサイエンティストでない人に、データサイエンティストっぽく働いてもらおう

気になるニュース&ネット記事(2019/10/03)

  1. Swift For TensorFlowのオープンソース化など、GW前後の機械学習関連ニュースまとめ
  2. Microsoft Build 2018 vs. Google I/O 2018[機械学習視点]: FPGA vs. TPU、ML.NET vs. ML Kit
  3. Neural Network Console クラウド正式版など - 機械学習の必読情報
  4. 無償公開! AI関連のPDF『Future Computed』、I/O 2018 & Build 2018 のセッション動画
  5. de:code 2018、AI関連セッションの動画&資料の一覧
  6. 立教大学大学院、2020年4月新設の「人工知能科学研究科」の特設サイトをオープン
  7. TensorFlowが学べる、無料のオンライン学習講座。CourseraとUdacityに新設
  8. BigQueryが無料で試せる「BigQueryサンドボックス」。毎月1TBの検索が可能
  9. 人気の東大松尾研「DL4US」ディープラーニング講座のコンテンツが無償公開
  10. Deep LearningコミュニティーDLLAB」の次回大規模イベント情報と、今後の方針・施策 〜2周年イベントより〜
  11. Python 2系終了のタイムリミット迫る。早く「3系」に切り替えよう
  12. スタンドアロンKerasとtf.kerasの違いとは? 〜 #AskTensorFlow より〜
  13. 機械学習概論〜ディープラーニングGAN、本格的に学べる全20時間の大学講義が無償公開

Pythonイベント(2019/09/27)

  1. Pythonが世界を席巻している理由:PyCon JP 2019 第1日目 基調講演レポート
  2. Pythonで切り開く新しい農業:PyCon JP 2019 第2日目 基調講演レポート
  3. 今がPython 2から移行するのにベストなタイミング:トークセッションレポート

AI・機械学習の用語辞典(2019/09/26)

  1. PoC(概念実証)とは?
  2. PoC貧乏とは?
  3. XAI(Explainable AI:説明可能なAI)/解釈可能性(Interpretability)とは?
  4. 透明性(Transparency)/透明なAI(Transparent AI)とは?

機械学習&ディープラーニング入門(Python編)(2019/08/31)

  1. Lesson 1 ディープラーニングを始めるための、Python基礎文法入門
  2. Lesson 2 モジュール ― Python基礎文法入門
  3. Lesson 3 コメント ― Python基礎文法入門、APIリファレンスの使い方
  4. Lesson 4 変数、オブジェクト ― Python基礎文法入門
  5. Lesson 5 データ型(ブール/数値/文字列) ― Python基礎文法入門
  6. Lesson 6 データ型(リスト/タプル/辞書/各種オブジェクト) ― Python基礎文法入門
  7. Lesson 7 関数 ― Python基礎文法入門
  8. Lesson 8 関数の定義 ― Python基礎文法入門
  9. Lesson 9 条件分岐 ― Python基礎文法入門
  10. Lesson 10 ループ処理 ― Python基礎文法入門
  11. Lesson 11 クラス ― Python基礎文法入門
  12. Lesson 12 クラスの定義 ― Python基礎文法入門
  13. Lesson 13 旧バージョン2環境への対応、標準ライブラリ ― Python言語の文法(応用編)
  14. Lesson 14 if 条件式、and/or/not 論理演算子 ― Python言語の文法(応用編)
  15. Lesson 15 ラムダ式 ― Python言語の文法(応用編)
  16. Lesson 16 リスト内包表記 ― Python言語の文法(応用編)
  17. Lesson 17 例外 ― Python言語の文法(応用編)
  18. Lesson 18 「Python言語基礎文法」と「いくつかの応用文法」のまとめ

機械学習&ディープラーニング環境構築入門(2019/08/29)

  1. UbuntuでのGPUディープラーニング環境の構築【Ubuntu 16.04 LTS対応】
  2. UbuntuでのGPUディープラーニング環境の構築【Ubuntu 18.04 LTS対応】

AWS DeepRacer入門(2019/08/22)

  1. 第1回 強化学習が楽しく学べる自律走行レーシングカー「AWS DeepRacer」とは?
  2. 第2回 AIの強化学習の基礎を学ぼう
  3. 第3回 強化学習を簡単に調整できるDeepRacerのコンソールとシミュレーター
  4. 第4回 手を動かして強化学習を体験してみよう(自動運転ロボットカーDeepRacer編)

機械学習の参考事例(2019/06/17)

  1. Deep Learningが医療向けVR/MRサービスでどう活用されたのか
  2. Deep LearningがECサイトの商品分類でどう活用されたのか

AI・機械学習の基本概念(2019/04/15)

  1. 人工知能(AI)とは?
  2. シンギュラリティ(Singularity:技術的特異点)とは?

機械学習&ディープラーニング入門(データ構造編)(2019/02/08)

  1. Lesson 1 機械学習を始めるための、Pythonデータ構造「多次元リスト」入門
  2. Lesson 2 機械学習に欠かせない、NumPy入門と「多次元配列(ndarray)」
  3. Lesson 4 「AIのデータ構造となるNumPyの多次元配列と、数値計算」の基礎まとめ
  4. Lesson 3 NumPyによる数学計算と、数学用語の「テンソル」

機械学習&ディープラーニング入門(コンピューター概論編)(2018/12/18)

  1. Lesson 1 ディープラーニングを始めるための、プログラムの基礎
  2. Lesson 2 ディープラーニングを始めるための、コンピューターの基礎
  3. Lesson 3 ディープラーニングを始めるための、アプリケーションと開発の基礎
  4. Lesson 4 「プログラム、コンピューター、アプリケーションと開発」の基礎まとめ

機械学習&ディープラーニング入門(作業環境準備編)(2018/12/11)

  1. Lesson 1 ディープラーニングを始めるための、作業環境の特長と使い分け指針
  2. Lesson 2 Google Colaboratory(Jupyter Notebook)の準備と、ノートブックの作成
  3. Lesson 4 「ディープラーニング作業環境の概要とGoogle Colaboratory(Jupyter Notebookのオンライン版)の使い方」まとめ
  4. Lesson 3 Google Colaboratory(Jupyter Notebookのオンライン版)の使い方

ディープラーニング習得、次の一歩(2018/08/08)

  1. Kerasを用いたディープラーニング(LSTM)による株価予測
  2. 挑戦! word2vecで自然言語処理(Keras+TensorFlow使用)
  3. word2vecリターンズ! 品詞分類による精度改善
  4. ディープラーニングで自動筆記 − Kerasを用いた文書生成(前編)
  5. ディープラーニングで自動筆記 − Kerasを用いた文書生成(後編)

TensorFlow入門(2018/04/27)

  1. 第1回 TensorFlowとは? 入門連載始動! データフローグラフ、事例、学び方
  2. 第2回 TensorFlow環境の構築
  3. 第3回 TensorFlowの基本構成要素:「テンソル」と「セッション」
  4. 第4回 CNN(Convolutional Neural Network)を理解しよう(TensorFlow編)
  5. 第5回 画像認識を行う深層学習(CNN)を作成してみよう(TensorFlow編)
  6. 第6回 RNN(Recurrent Neural Network)の概要を理解しよう(TensorFlow編)
  7. 第7回 時系列データの予測を行う深層学習(RNN)を作成してみよう(TensorFlow編)
  8. 第8回 TensorBoardとは? スカラー値やデータフローグラフの可視化

機械学習&ディープラーニング入門(概要編)(2018/04/18)

  1. Lesson 1 AI・機械学習・ディープラーニングがしたい! そもそも何ができるの?
  2. Lesson 2 機械学習やディープラーニングには、どんな手法があるの?
  3. Lesson 3 機械学習&ディープラーニングの、基本的なワークフローを知ろう

Deep Insiderオピニオン:吉崎亮介(2017/11/27)

  1. 第1回 人工知能・機械学習・ディープラーニングとは? 基礎概念まとめ
  2. 第2回 機械学習に必要なスキルセット

Web APIで簡単に使えるAIサービス(2017/10/20)

  1. これから始める人のための最新Cognitive Services入門

OpenCV入門【3.0対応】(2017/09/12)

  1. 第1回 OpenCVとは? 最新3.0の新機能概要とモジュール構成
  2. 第2回 OpenCV 3.0の新機能(+ 次バージョンのロードマップ)
  3. 第3回 OpenCVの環境構築(OpenCV 3.0/3.1)
  4. 第4回 初めてのOpenCV開発 ― Visual Studio/CMake/NuGetでプロジェクト作成【OpenCV 3.0/3.1】
  5. 第5回 初めてのOpenCV開発 ― coreモジュール【OpenCV 3.1.0】
  6. 第6回 初めてのOpenCV開発 ― highgui/imgcodecs/videoioモジュール【OpenCV 3.1.0】
  7. 第7回 初めてのOpenCV開発 ― デバッグ機能およびデバッグ支援プラグイン【OpenCV 3.1.0】
  8. 第8回 初めてのOpenCV開発 ― CMakeを使ったOpenCVのカスタマイズ【OpenCV 3.1.0】
  9. 第9回 初めてのOpenCV開発 ― opencv_contrib紹介【OpenCV 3.1.0】

まだ知らないエンジニアのための人工知能/機械学習概説(2016/05/20)

  1. 第3次人工知能(AI)ブームにおける機械学習、そろそろ入門しよう!

RSSについて

アイティメディアIDについて

メールマガジン登録

@ITのメールマガジンは、 もちろん、すべて無料です。ぜひメールマガジンをご購読ください。